Structure of a collagen-GAG dermal skin substitute optimized for cultured human epidermal keratinocytes.

نویسندگان

  • S T Boyce
  • D J Christianson
  • J F Hansbrough
چکیده

Collagen and glycosaminoglycan (GAG) dermal skin substitutes (membranes) were studied as substrates for cultured human epidermal keratinocytes. Structure of dermal substitutes was optimized for pore size to promote ingrowth of fibrovascular tissue from the wound bed and for culture of human keratinocytes of the membrane's surface. Pore size of the freeze-dried material was regulated by control of the temperature of freezing between -50 degrees C and -20 degrees C and by concentration of starting materials between 0.17% and 1.62% wt/vol. A nonporous surface of collagen-GAG was laminated to the membranes to provide a planar substrate for cultured epidermal keratinocytes. Thickness of dermal substitutes was regulated by control of the volume and concentration of starting materials. Biotin was conjugated to solubilized collagen for binding with avidin of specific quantities of biologically active molecules. The optimized membranes are suitable substrates for the culture of human epidermal keratinocytes, and together with the cells yield a composite material that is histologically similar to skin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pigmentation and microanatomy of skin regenerated from composite grafts of cultured cells and biopolymers applied to full-thickness burn wounds.

Rapid coverage and epithelial closure of extensive burns remains a major requirement for patient recovery. Although many skin substitutes have been described, permanent regeneration of both epithelial and connective tissues after a single surgical application of a skin substitute has not become routine. To replace both dermal and epidermal skin, cultured skin substitutes (CSS) were prepared fro...

متن کامل

In vitro Co-Culture of Human Skin Keratinocytes and Fibroblasts on a Biocompatible and Biodegradable Scaffold

Background: Extensive full-thickness burns require replacement of both epidermis and dermis. In designing skin replacements, the goal has been to re-create this model and make a product which has both essential components. Methods: In the present study, we developed procedures for establishing confluent, stratified layers of cultured human keratinocytes on the surface of modified collagen-chito...

متن کامل

Biologic attachment, growth, and differentiation of cultured human epidermal keratinocytes on a graftable collagen and chondroitin-6-sulfate substrate.

Repair of full-thickness burns requires replacement of both the dermal and the epidermal components of the skin. Use of tissue culture methods allows very large expansions of surface area to be covered by cultured normal human epidermal keratinocytes (HK). Porous and resorbable materials, such as collagen and chondroitin-6-sulfate membranes, may be expected to adhere to wounds and promote fibro...

متن کامل

Type VII collagen gene expression by cultured human cells and in fetal skin. Abundant mRNA and protein levels in epidermal keratinocytes.

Type VII collagen, a genetically distinct member of the collagen family, is present in the cutaneous basement membrane zone as an integral component of the anchoring fibrils. We have recently isolated several cDNAs that correspond to human type VII collagen sequences. One of these cDNAs (clone K-131) was utilized to examine type VII collagen gene expression in cultures of human cells by Norther...

متن کامل

Cultured Equine Autologous Keratinocytes on Collagen Membrane for Limb Wound Healing

Objective— Use of equine autologous keratinocyte on collagen membrane grafts (KCMG) for treatment of wounds in the distal aspect of the horse limb. Design— Experimental study Animals— Four horses. Procedure—Keratinocytes have been separated by enzyme digestion from lib skin sample and proliferated in vitro. Full thickness excision wounds (6.25 cm2) were created on the mid-lateral of both met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical materials research

دوره 22 10  شماره 

صفحات  -

تاریخ انتشار 1988